Exam Seat No:-____

C.U.SHAH UNIVERSITY

Summer-2015

Subject Name: Engineering Mathematics-IV

Subject Code: 4TE04EMT1 Course Name: B.Tech(All) Semester: IV

Date: 19/5/2015 Marks: 70 Time: 02:30 TO 05:30

Instructions:

- 1) Attempt all Questions in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

SECTION-I

Q-1 (a)	Write the formula for Weddle's Rules.	[01]
(b)	Evaluate $\Delta^n e^x$.	[02]
(c)	Solve: $(1+\Delta)(1-\nabla) = 1$	[02]
(d)	Show that the function $f(z) = z ^2$ is differentiable only at origin.	[02]
Q-2 (a)	Show that the function $u(x, y) = y + e^x \cos y$ is harmonic function and determine their conjugate harmonic.	[05]
(b)	Find the image of the infinite strip $\frac{1}{4} \le y \le \frac{1}{2}$ under the transformation $w = \frac{1}{z}$. Also	[05]
(c)	the regions graphically. The function $w = \log z$ is analytic or not?	[04]
	OR	
Q-2 (a)	If $f(z) = u + iv$ is an analytic function of $z = x + iy$	[05]
	And $u-v=e^{x}(\cos y-\sin y)+x+y$, Find $f(z)$.	
(b)	Determine the bilinear transformation which maps the point $0, \infty, i \text{ to } \infty, 1, 0$.	[05]
(c)	Show that the function $w = z^{5/2}$ is satisfied C-R equation.	[04]
Q-3 (a)	Given $10\frac{dy}{dx} = x^2 + y^2$, $y(0) = 1$. Using Runge-Kutta method of forth order, find	[05]
	y(0.2) with $h = 0.1$.	
(b)	Solve the following system of equations by Gauss-Seidel method. x+10y+z=6, $x+y+10z=6$, $10x+y+z=6$.	[05]

Page ${\bf 1}$ of ${\bf 3}$

(c) Evaluate
$$\int_{0}^{3} \frac{dx}{1+x}$$
 with $w = 6$ by using Simson's $\frac{3}{8}$ rule and hence calculate log 2. [04]

- Q-3 (a) Use Runge –Kutta method of third order to find the solution of the initial value [05] problem $\frac{dy}{dx} = x + \sqrt{y};$ y(0) = 4 for x = 0.2 taking h = 0.1 correct up to four decimal.
 - (b) Using Taylor's series method, Find y(0.2) if y(x) satisfies

$$\frac{dy}{dx} = 2y + 3e^x;$$
 $y(0) = 0$ Compare the numerical solution with the exact [05] solution.

(c) Consider the following tabular value.

X50100150200250y6187248059061032			<u> </u>			
y 618 724 805 906 1032	Х	50	100	150	200	250
	у	618	724	805	906	1032

Determine y(300)

SECTION-II

Q-4 (a) Evaluate
$$\lim_{z \to i} \frac{z^2 + 1}{z - i}$$
. [01]

(b) If
$$f(z) = \begin{cases} \frac{z}{z} & , z \neq 0 \\ 0 & , z = 0 \end{cases}$$
 continuous at origin? [02]

(c) Sketch the Regions
$$|2z+1+i| < 4$$
. [02]

(d) Find
$$\nabla \phi$$
 at $(1, -2, 1)$ if $\phi = 3x^2y - y^3z^2$. [02]

[05] Q-5 (a) Using the Fourier integral representation prove that [0, x < 0]

$$\int_{0}^{\infty} \frac{\cos \omega x + \omega \sin \omega x}{1 + \omega^2} d\omega = \begin{cases} \frac{\pi}{2}, x = 0\\ \pi e^{-x}, x > 0 \end{cases}$$
Verify Green's theorem for $\iint (x^2 - 2xy) dx + (x^2y + 3) dy$ where *C* is the [05]

(b) Verify Green's theorem for
$$\prod_{c} (x^2 - 2xy) dx + (x^2y + 3) dy$$
 where *C* is the [05]

boundary of the region bounded by the parabola $y = x^2$ and line y = x.

Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$ along the parabola $y^2 = x$ between the points (0,0) and (1,1) (c) [04] where $\overline{F} = x^2 \hat{i} + xy \hat{j}$

OR
Q-5 (a) Find the Fourier transformation of
$$e^{-x^2a^2}$$
, $a > 0$ [05]

(b) Evaluate the Stokes theorem $\iint_C (4ydx + 2zdy + 6ydz)$ where *C* is the curve of [05] intersection of the sphere $x^2 + y^2 + z^2 = 6z$ and the plane z = x + 3

(c) Find $\operatorname{curl} \cdot \operatorname{curl} \overline{A} = x^2 y \hat{i} - 2xz \hat{j} + 2yz \hat{k}$ at point (1,0,2). [04]

Q-6 (a) Given

Х	10	20	30	40	50	
у	600	512	439	346	243	[05]
Using sterling	ng's formula	a find y_{35}				

(b) Use Langrage's interpolation formula to find the value of y when x = 10 if the value of x and y are given below

Х	5	6	9	10		
Y	12	13	14	16		
2						

(c) Evaluate $I = \int_{2}^{3} \frac{\cos 2x}{1 + \sin x} dx$ Using Gaussian two point and three point formula. [04]

OR

Q-6 (a) Prove that

(1)
$$\Delta = e^{hD} - 1.$$

(2) $\left(\frac{\Delta^2}{E}\right) e^x \cdot \frac{Ee^x}{\Delta^2 e^x} = e^x.$
[05]

- (b) Using Euler modified method, solve $\frac{dy}{dx} = \log(x+y);$ y(1) = 2 [05]
 - at x = 1.2 and x = 1.4, taking h = 0.2 correct up to 4-decimal
- (c) Solve: x+y+z=9, 2x-3y+4z=13, 3x+4y+5z=40 by Gauss elimination method. [04]

19-5

[05]