\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Code: 4Te04emt1
Subject Name: Engineering Mathematics-IV
Course Name: B.Tech(All)
Semester: IV
Date: 19/5/2015
Marks: 70
Time: 02:30 TO 05:30

Instructions:

1) Attempt all Questions in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

SECTION - I

Q-1 (a) Write the formula for Weddle's Rules.
(b) Evaluate $\Delta^{n} e^{x}$.
(c) Solve: $(1+\Delta)(1-\nabla)=1$
(d) Show that the function $f(z)=|z|^{2}$ is differentiable only at origin.

Q-2 (a) Show that the function $u(x, y)=y+e^{x} \cos y$ is harmonic function and determine their conjugate harmonic.
(b) Find the image of the infinite strip $\frac{1}{4} \leq y \leq \frac{1}{2}$ under the transformation $w=\frac{1}{z}$. Also the regions graphically.
(c) The function $w=\log z$ is analytic or not?

OR

Q-2 (a) If $f(z)=u+i v$ is an analytic function of $z=x+i y$
And $u-v=e^{x}(\cos y-\sin y)+x+y$, Find $f(z)$.
(b) Determine the bilinear transformation which maps the point $0, \infty, i$ to $\infty, 1,0$.
(c) Show that the function $w=z^{5 / 2}$ is satisfied C-R equation.

Q-3 (a) Given $10 \frac{d y}{d x}=x^{2}+y^{2}, y(0)=1$. Using Runge-Kutta method of forth order, find $y(0.2)$ with $h=0.1$.
(b) Solve the following system of equations by Gauss-Seidel method.
$x+10 y+z=6, \quad x+y+10 z=6, \quad 10 x+y+z=6$.

(c) Evaluate $\int_{0}^{3} \frac{d x}{1+x}$ with $w=6$ by using Simson's $\frac{3}{8}$ rule and hence calculate $\log 2$.

OR

Q-3 (a) Use Runge - Kutta method of third order to find the solution of the initial value problem $\frac{d y}{d x}=x+\sqrt{y} ; \quad y(0)=4$ for $x=0.2$ taking $h=0.1$ correct up to four decimal.
(b) Using Taylor's series method, Find $y(0.2)$ if $y(x)$ satisfies
$\frac{d y}{d x}=2 y+3 e^{x} ; \quad y(0)=0$ Compare the numerical solution with the exact solution.
(c) Consider the following tabular value.

X	50	100	150	200	250
y	618	724	805	906	1032

Determine $y(300)$

SECTION-II

Q-4 (a) Evaluate $\lim _{z \rightarrow i} \frac{z^{2}+1}{z-i}$.
(b) If $f(z)=\left\{\begin{array}{ll}\bar{z} & , z \neq 0 \\ \bar{z} & , z=0\end{array}\right.$ continuous at origin?
(c) Sketch the Regions $|2 z+1+i|<4$.
(d) Find $\nabla \phi$ at $(1,-2,1)$ if $\phi=3 x^{2} y-y^{3} z^{2}$.

Q-5 (a) Using the Fourier integral representation prove that

$$
\int_{0}^{\infty} \frac{\cos \omega x+\omega \sin \omega x}{1+\omega^{2}} d \omega=\left\{\begin{array}{l}
0, x<0 \tag{05}\\
\frac{\pi}{2}, x=0 \\
\pi e^{-x}, x>0
\end{array}\right.
$$

(b) Verify Green's theorem for $\underset{C}{ }\left(x^{2}-2 x y\right) d x+\left(x^{2} y+3\right) d y$ where C is the boundary of the region bounded by the parabola $y=x^{2}$ and line $y=x$.
(c) Evaluate $\int_{C} \bar{F} \cdot d \bar{r}$ along the parabola $y^{2}=x$ between the points $(0,0)$ and $(1,1)$
where $\bar{F}=x^{2} \hat{i}+x y \hat{j}$

OR

Q-5 (a) Find the Fourier transformation of $e^{-x^{2} a^{2}} \quad, a>0$

Page $\mathbf{2}$ of $\mathbf{3}$

(b) Evaluate the Stokes theorem $\int_{C}(4 y d x+2 z d y+6 y d z)$ where C is the curve of
intersection of the sphere $x^{2}+y^{2}+z^{2}=6 z$ and the plane $z=x+3$
(c) Find curl $\cdot \operatorname{curl} \bar{A}=x^{2} y \hat{i}-2 x z \hat{j}+2 y z \hat{k}$ at point $(1,0,2)$.

Q-6 (a) Given

X	10	20	30	40	50
y	600	512	439	346	243

Using sterling's formula find y_{35}
(b) Use Langrage's interpolation formula to find the value of y when $x=10$ if the value of x and y are given below

X	5	6	9	10
Y	12	13	14	16

(c) Evaluate $I=\int_{2}^{3} \frac{\cos 2 x}{1+\sin x} d x$ Using Gaussian two point and three point formula.

OR

Q-6 (a) Prove that
(1) $\Delta=e^{h D}-1$.
(2) $\left(\frac{\Delta^{2}}{E}\right) e^{x} \cdot \frac{E e^{x}}{\Delta^{2} e^{x}}=e^{x}$.
(b) Using Euler modified method, solve $\frac{d y}{d x}=\log (x+y) ; \quad y(1)=2$
at $x=1.2$ and $x=1.4$, taking $h=0.2$ correct up to 4 -decimal
(c) Solve: $x+y+z=9,2 x-3 y+4 z=13,3 x+4 y+5 z=40$ by Gauss elimination method.

